Comparative, hypsomelrical and physical Tableau of Hiyh Asia, the Andes, and the Alps.-By Robert de Schlagintweit, Professor. at the University of Giessen.

Contents.-I. Geographical configurations. 1. Plateaux. 2. Passes 3. Peaks.
II. Hydrography. 1. Lakes. 2. Springs.
III. Physical phenomena. 1. Snow-fall. 2. Snow-line. 3. Glaciers.
IV. The varietics of halitation. 1 Towns and villages. 2. Pasture grounds.
V. Lxtreme heights visited by man. 1. Mountain-ascents. 2. Balloon-ascents. 3. Effect of height.
VI. Limits of vegetation and animal life.

Remarks.-1. Drawings of many of the objects (plateaus, peaks, towns, \&c.) mentioned in this Tableau, as well as panoramic profiles and maps, are contained in the Atlas to the "Results of a scientific mission to India and High Asia," by Hermann, Adolphe, and Robert de Schlagintweit.
2. The heights, given in English feet, are absolute, referring to mean sea-level.
Transcription.-Vowels and diphthongs sound as in Italian and German: $\breve{\mathbf{a}}=\mathbf{u}$ in " but $; " \hat{\mathbf{a}}=$ an in the French " gant ;" $\ddot{u}=\ddot{\mathbf{u}}$ in German.-- Consonants as in English. The sign ' marks the syllable to be accentuated.
The materials, upon which this comparative tableau is based, are :
For High Asia, viz.-The Himálaya, Western 'libet, the Karakorúm and Künlün, our own travels and observations, combined with the valuable data of the Great Trigonometrical Survey of India, and with those of our predecessors.
For the Audes.--The celebrated "Voyages aux régions équinoctiales," by Alexander de Humboldt, which possess to this day the highest value and importance ; in his recent publications,* the newest contributions of science have been added with a master's hand.

* Kosmon--Ansichten der Nat.ur, 3rd edition.-Kleinere Schriften,-I always quote the original, German cilition.

For the $A l p s,-$ The two volumes " Untersuchungen über die physicalische Geographie und die Geologie der Alpen," published by my brothers Alolphe and Hermann.

I. Geographical Configtrations.

1. Plateaux.

Plateaus, in consequence of their being more or less intersected by deep and broad valleys, or from being covered with ridges, are so variable in their form, that the use of the name, in many instances, appears to be somewhat arbitrary. I prefer not to extend the meaning of the name too far, and in so doing diverge from the practice of earlier travellers, who commonly applied the term to every mountainous region of great general elevations-as the natives of the Himálaya have a tendency to do-irrespective of its form.

In the Himálaya, which is composed in almost every direction of lofty and irregular ridges, and intersected by numerous valleys of inconsiderable width, no plateau of any extent has been discovered as yet, nor is it at all probable that one exists.

Westorn Tibet was for a long time supposed to be little else than a country of plateaux-an erroneous impression emanating from the first observers, though Humbollt had early pointed out the error of this belief,* as well as later travellers (the Stracheys, Cunningham, and Thomson). Plateaux certainly do occur in Tibet ; they are, however, much less numerous and considerably smaller than I had been led to expect. In Bálti, the plateau Deosái is $14,200 \mathrm{ft}$. high.

Between the Karakorim and Kïnlïn, especially near the western crest of the former, several well-defince plateaux of extraordinary height occur. Some of the highest are called : Dápsang ($17,500 \mathrm{ft}$), Búllu ($16,883 \mathrm{ft}$.), Aksăe Chin ($16,620 \mathrm{ft}$), and Voháb ($16,419 \mathrm{ft}$) In summer, no suow covers these plateaux, but also no vegetation : in the far distance there are some isolated, lofty, snowy peaks, besides which the eye discerns nothing but barren rocks, and extensive sterile plains, all well watered by streams, to which the glaciers covering the flanks of the peaks afforl an ample and lasting supply. If water was wanting to these plateaux, they would be a complete desert, as uninhabitable to man as to any animal.

* Ansichten der Natur. Vol. I., p. 104.

In the Andes are to be found, if not the highest, at least the most extensive plateaux of our globe, which generally lic along the very ridge of the mountains, and on which large towns are situated, as Cerro de Pasco (14,098 ft.), Potosi (13,665 ft.), and Cuzco (11,380 ft.). There is also a large plateau surrounding the elevated lake Titicaca ($12,843 \mathrm{ft}$.).

In the $A l p s$, plateaux occur only at their base; the Swiss plateau having a mean height of $1,460 \mathrm{ft}$., the Suevo-Bavarian plateau of $1,420 \mathrm{ft}$.

2. Passes.

The mean of a sufficient number of such passes, which lead over the principal crests, is particularly to be taken into consideration, it being approximatively proportional, or, to express it more clearly, equal to the general mean height of these cerests. The passes situate in the lateral ramifications of the principal crests-though they are numerous -cannot be included in these general means, being geographically of subordinate importance.

The mean height of passes in the three principal mountain-chains of High Asia is as follows:
A. For the Himalaya (mean of 19 passes,)..... $17,800 \mathrm{ft}$.

From Síkkim to Kishtvar : Bhután and Kashmír being excluded: the former for want of materials, and Kashmir on account of the Himalaya there losing the character of one well-defined and predominant chain.
B. For the Karakorum (mean of 3 passes,) ... $18,700 \mathrm{ft}$.

From long. E. Gr. 76° to $79 \frac{1}{2}^{\circ}$, the heights in the castern continuation being quite unknown.
C. F'or the Künlün (mean of 2 passes,)........ $17,000 \mathrm{ft}$.

As the two passes are situated in parts not differing in any particular from the general mean of this chain, they may be looked upon as representatives of the other.

From these numbers it appears, that the Karakorim has by far the greatest mean height of passes; but the one pass which we must still consider the highest, is situated in the Himalaya. This is the $I b i$ Gaimin pass ($20,459 \mathrm{ft}$.) leading from Gărhvál to Gnárí Khórsum, which my brother Adolphe and 1 myself crossed as the first, and as yet as the only Earopeans, Aug. 22, 1855. The pass next in height
is the Mustágh pass in the Karakorúm chain (19,019 ft.), the third the Changehénmo, or Yéngi Daván (about 18,800 ft.), in the same chain. None of these passes are generally used as commercial roads. The lighest pass as yet known to be regularly crossed with horses and sheep, for the purposes of commerce, is the Parrang pass ($18,500 \mathrm{ft}$.; Mr. Theobald, Jr. makes it $19,132 \mathrm{ft}$., which seems too high-); and between this height and $18,000 \mathrm{ft}$. are situated several of the most important and frequented passes, as the Mána ($18,406 \mathrm{ft}$.) the Karakorúm ($18,345 \mathrm{ft}$.) and the Kióbrang ($18,313 \mathrm{ft}$.). The lowest passes in the Himálaya chain are the Shínku La (16,684 ft.) and the Bára Lacha ($16,186 \mathrm{ft}$.) ; the well known Níti pass reaches $16,814 \mathrm{ft}$.

In the Audes, the general mean elevation of the passes is, according to Berghaus:

> For the Western Andes, 14,500 ft.
> For the Eastern Andes,..... 13,500 ft.

The highest passes are: Alto de Toledo ($15,590 \mathrm{ft}$.), Lagunillas ($15,590 \mathrm{ft}$.), and Assuay $15,526 \mathrm{ft}$.). The latter pass attains, according to Schmarla, only $14,517 \mathrm{ft}$.

In the $A l_{1}{ }^{s,}$, the mean of the passes is $\ldots \quad 7,550 \mathrm{ft}$.
The highest pass, at least in former times not frecquently used for commercial purposes, is the St . Théodule ($11,001 \mathrm{ft}$.), upon which the brothers Platter have now erected a meteorological observatory.

3. Peaks.

In the beginning of this century, the Andes were supposed to contain the highest peaks on our globe, and Chimborazo to rise supreme alove the rest. Though as carly as 1816 this was proved by Captain Welb's measurements to be incorrect, yct some time clapsed, before the superiority of the Himálaya above the Andes was generally admitted. Now we know, from the valuable and accurate observations of the G. T. Survey of Inlia, that Gaurisáukar, or Mount Everest ($29,002 \mathrm{ft}$.) is the highest peak of the world. The memoir of Major J. T. Walker in the Journal of the Asiatic Society of Bengal, 1862, No. I., [p. 32-48, gives a detailed enumeration of the peaks hitherto measured in the Himalaya; this memoir, as well as the publications of Captain Montgomeric and private commmenications kindly receivel from the Surveyor Gencral's Office, cmable me to state, that 216 peaks are now accurately measured in the chain of the IIim Iaya. Among
these 216 peaks, 17 exceed the height of $25,000 \mathrm{ft}$., 40 the height of $23,000 \mathrm{ft}$., and 120 the height of $20,000 \mathrm{ft}$.

In the Raralorím, peaks have lately been discoverel, which are scarcely inferior in height to the loftiest in the Himálaya, though ouly its western part has as yet been explored. With regard to the heights of its eastern continuation, there is not enough known to allow even of an estimate being made.

The highest peaks of the Karakorum are the Dápsang (Ko of the G. T. S. $28,278 \mathrm{ft}$), the Diámar ($26,629 \mathrm{ft}$), and the Masheribrúm (25,625 ft.)

With refercnce to the Künlün, we can only mention the peaks that we saw and measured between the Yurungkásli pass and the western termination of this chain; our illea about the general height is the more limited, as we have not even itinerary reports of former travellers to assist us. None of the peaks seen there by ourselves execeds $22,000 \mathrm{ft}$.

In the Andes, important alterations have very recently been made with reference to the succession of the peaks, when arranged according to height, and, even now, the same amount of accuracy camot be ascribed to the hypsometrical determination of its principal peaks as to the trigonometrical operations in the Himalaya. The highest peak in the Andes is the Aconcagua (23,00t ft.) in Chili (Pissis gives only $22,451 \mathrm{ft}$.) : and there are as many as five peaks higher than the Chimbarozo ($21,422 \mathrm{ft}$.). In High Asia, forty-five peaks are known, which exceel in height the dominating peak of the Andes, the Aconcagua.

In the $A l_{\eta}$ s, Mont Blanc ($15,784 \mathrm{it}$.) and Monte Rosa ($15,223 \mathrm{ft}$.) are well known to be the highest peaks. Other high peaks are; Tăschhorn, or Lagerhorn ($14,95 t \mathrm{ft}$.), Weisshorn ($14,813 \mathrm{ft}$), Mont Cervin ($14,787 \mathrm{it}$), and Dent Blanche ($14,305 \mathrm{ft}$.).

.IT. IIydrograpity.

1. Lakes.

In the Mimailtya, there are but very few"lakes. That of Nainitál ($6,520 \mathrm{it}$.), in Kamáon, the Víllar lake ($5,12 \mathrm{l}$ ft.), and the Chinair lake near Stringiar in Kashmír, suffice to exhanst the category of those deserving mention.

Glacier lakes.-Accumulations of water formed by one glacier obstructing the outlet of a higher one-are of much more frequent occurrence. At times, the wall of ice breaks away before the pressure of the swollen waters, when the lower lands become suddenly inundated, and the torrent rushes on with uninterrupted violence for miles, exercising a marked influence even down to the lower parts of the river. Similar inundations, some of them of a most destructive character, have several times occurred. Two of the most elevated glacier-lakes are the Destál ($17,745 \mathrm{ft}$) , in Gǎrhvál, and the Námtso, or Yúnám ($15,570 \mathrm{ft}$.) in Lahō.

Western Tibet and Turkistán possess many lakes, all of which are situated in great heights; they are, however, gradually drying up, as becomes apparent by the unmistakeable marks of larger surfaces remaining from former times. They contain a greater quantity of salt than lakes in general, and most of them to an amount which renders them more or less brackish.

The following are the names and the heights of the principal :Lakes of Western Tibet and T'urkistin.

Aksńe Chin, 16,620	Níma Kar,	
T'so Gyagír, 15,693	Háule,	00
'I'so Kar, or Khauri Talán, 15,684	Tso Gam,	80
Míre Tso, 15,517	Tso Bul,	... 14,400
Kiúk-Kíöl, 15,460	Tso Mitbál,	14,167
Mansaráur, or Tso Mápan, 15,250	Upper Tsom	14,050
Rákus Tal, or Tiso Lánag, 15,250	Lower Tsomognalar	14,010
somoríri,... *15,130		

In the Andes, the most remarkable lake is that of Titicaca ($12,843 \mathrm{ft}$.)

The foot of the $A l_{p s}$ is adorned with a great many lakes, all in low elcuations of from 600 to $1,600 \mathrm{ft}$.

2. Springs.

Springs of an orlinary, moan temperature, commonly called cold springs, are of frequent occurrence in H igh Asia; the finest and most copious springs are to be found in Kushmír, as the spring Vémag, Vetur Víllar, Kókar Nag, Achibal, A'nat Nag and others. The apring Sómla Buéri, also in Kashmír, situate about five miles southeast of Shahalind, is the only intermittent spring as yet known in High Asia.

[^0]In Western Tibet, where rains in the higher parts are rare, and where the dryness in summer is so excessive that even the formation of dew is scarcely perceptible, cold springs are comparatively rare. In Turkistán, in Bálti, and Hasóra, we find a greater number of springs, a fact intimately connected with the general meteorological conditions of these provinces.

With reference to the limit, at which springs are to be found still in High Asia, I give the following data, derived from our own observations. The greatest height, at which we found a spring in the Himálaya, was $15,920 \mathrm{ft}$.; this spring was situated on the slopes of the Kyúngar pass. In Tibet, we discovered a real spring on the slopes of the Ibi Gămin peak still at a height of $\mathbf{1 7 , 6 5 0} \mathrm{ft}$.; this spring is probably the lighest spring litherto found.

As the highest spring in the Andes, Humboldt names the one called "Ladera de Cadlud," at a height of $15,526 \mathrm{ft}$. above the level of the sea; in the Alps, Adolphe and Hermann have found the highest cold spring at $10,440 \mathrm{ft}$.

Hot springs occur in High Asia in a surprisingly great number,* from the sea-level up to heights of more than $16,000 \mathrm{ft}$. The highest hot springs of High Asia are at Murgái, (16,382 ft.), in Núbia, at Momái (about $16,000 \mathrm{ft}$.), in Sikkim, at Púga ($15,264 \mathrm{ft}$.), in Ladák, near the lake Aiúkkió ($15,010 \mathrm{ft}$.), in Turkistán, and at Chagrár (about 15,000 ft.), in Pangkóng. As a curious and remarkable fact I may add, that the highest hot spring in India, at Hazaribágh, in Bengal, is only $1,750 \mathrm{ft}$. above the level of the sea.

The hottest spring of High Asia is at Manikărn (temp. 202 ${ }^{\circ}$ Faht.) in Kúlu (this is the hottest spring as yet found all over Asia), at Jămnótri (temp. 193° Falıt.) in Gărhvál, and at Chorkónda (temp. 190° Falt.) in Bálti. The hottest springs of the world (if we exclude those, which rise in the immediate neighbourhood of voleanoes) are to be found in the Andes. There "Aguas de Comangillas," near Chichemequillo and Quanaxuato, at a height of about 6,200 ft., in latitude north 21°, show a temperature of $205^{\circ} .3$ Faht. ; \dagger and the springs "Las Trincheras" between Porto Cabello and Valencias, in

[^1]Mexico, have increased, between the years 1806 and 1823 , from 195°
Frht. to $206^{\circ} .6$ Faht.,* thus exceeding at present the temperature of the "Aguas de Comangillas" by $1^{\circ} .3$ Faht.

The hottest known spring of Europe, unconnected with present volcanoes, is that of Chaudes Aigues in Auvergne (temp. 176° Faht.). \dagger

III. Physical Peenomena.

1. Snow-fall.

The lowest height at which snow has fallen in the Himálaya during the winter, is about $2,500 \mathrm{ft}$., but such cases are extremely rare, having occurred in Kămdon and Gărhval only twice (in 1817 and 1847), since the British took possession of the country \ddagger Snow has fallen in the memory of man only once in Nahán§ (3,207 ft.), in the province of Simla. The snow, which falls once within several years in the Kángra valley, down to heights of 3,000 and $2,700 \mathrm{ft}$., disappears almost immediately. At Haribágh the snow melts away on the day it falls, or at least within thirty-six hours. Daring my travels in Kúlu, I was informed by the natives, as well as by several gentlemen who knew this part of the country thoroughly, that the village of Mándi ($2,480 \mathrm{ft}$.), is below the limit of snow-fall.

At an elevation of $5,000 \mathrm{ft}$. scarcely one year passes by without snow-fall ; but, even at this height, the snow disappears after a few days, and sometimes even hours. "It snows, but one does not see it," the natives of Kathmándu ($4,354 \mathrm{ft}$.) very significantly use to say, meaning, that the rare nightly snow-falls are melted away by the earliest rays of the sun. $6,000 \mathrm{ft}$. may be assigned as the limit in the Himalaya, where snow regularly falls in winter, with the probability of remaining some time upon the ground.

In Western Tibet and in the Karaliorim, the general elevation of the country is so great, even in its lowest regions, that no part lios below the limit of hibernal snow-fall. But the quantity of snow actually falling is inconsiderable, and this circumstance it is, which forms one of the chicf causes that the passes of the Karakorum, even

[^2]the highest, remain open throughout the year. In some parts of Tibet the winter is the only season, when atmospheric precipitation at all takes place.

In the Künlün, even on its southern slopes, a greater amount of snow is precipitated than on the northern side of the Karakorím, whilst its Turkistani (northern) slopes differ still more from the Karakorúm in this respect, they being visited by very heavy rains and great snow-falls. Even at Káshgar (about $3,500 \mathrm{ft}$), in Turkistán, there are said to be several snowy days every winter.

The data, which I was able to collect on snow-fall in the Andes, are so few and vague, that I conld not drav any conclusion from them. Also for the $A l p s$, I could not bring forward any new facts with reference to the snow-fall.

2. Snow-line.

The snow-line, or the average height where snow remains perpetually throughout the year, has offered unexpected difficulties in its determination for the Himálaya. When Webl and Moorcroft first pointed out the general heights reached by the snow-line, when they first discovered the remarkable fact, that, in spite of the influence arising from exposition, the snow-line of the Himálaya descends lower on its southern (Indian) than on its northern (Tibetan) slopes, the statements of these travellers, now proved to be correct in all material points, were discredited by men of science both in Europe and in India. Humbollt, however, was among the first who endeavoured to remove the distrust with which these discoveries were received; he also gave an explanation* of the causes which were possibly sufficient to originate so remarkable a phenomenon as this of the unlookedfor differences existing between the snow-lines of the Tibetan and Indian slopes. He considers it "the results conjointly of the radiation of heat from the neighbouring elevated plains, the serenity of the sky, and the infrequent formation of snow in very cold and dry air." Of all these causes, however, the last is the most important. The direct insolation, leing less interrupted on the Tibetan sile, has also its share of influence ; but the effect is comparatively small. As the best corroboration of the quantity of snow-fall being the principal cause of the depression on the southern (Indian) slope of the Himálaya, may * " Λ sio Centrale," pp. 281, 327; "Knsmos;" Vol. I. p, 358.
be adduced the fact, that we found the isothermal lines for the year and the summer, which coincided with the snow-line on the Indian side, decidedly warmer than those on a level with the Tibetan snowline. The fact, moreover, of the Karalorum-though on an average three degrees farther north - having the snow-line so excessively high on both its slopes, offers another instauce of the influence of limited precipitation.

In the Künlün, the meteorological conditions also become apparent in the different limits of the snow-line on either side; but here the effect is the reverse of that perceived in the Himálaya, the greater precipitation on the " northern" slopes (towards the plains of Turkistán) lowering the snow-line on that side to a considerable extent.

Although, in the Himalaya at large, the snow-limit of the Tibetan side does not descend so low as that of the Indian, yet the influence of exposition at once becomes apparent in the ordinary sense, corresponding to these latitudes, if we examine the slopes of a crest or mountain, of which, by the nature of its position, both slopes belong either to the Indian side of the ridge in general, or to the Tibetan side. The many and vehement disputes upon the much-discussed subject of snow-limits have chiefly arisen from the entire neglect of this modification.*

The values we obtain for the height of the snow-line on the three mountain chains of High Asia are :

				Feet.		
A.	Himálaya.	Southern (Indian slopes), ...	\ldots	\ldots	16,200	
		Northern (Tibetan) slopes;	\ldots		\ldots	17,400
B.	Karakorúm.	Southern (Tibetan) slopes,	\ldots	\ldots	19,400	
		Northern (along the Turkistani plateaux),	18,600			
C. Künlün.	Southern (facing mountainous ramifications), 15,800 Northern (facing the Turkistáni plain), $\dagger \ldots$	15,100				

For the Andes, the snow-limits are, according to Humboldt and Pentland:

[^3]Feet.

Eastern Andes of Bolivia, ...		\ldots	\ldots	15,900	
Western Andes of Bolivia,	\ldots		\ldots	18,500	
Andes of Quito, ...	\ldots		\ldots	\ldots	15,700

For the Alps, my brothers obtained:

Southern slopes,	\ldots		\ldots		\ldots	9,200
Northern slopes,...		\ldots		\ldots	\ldots	8,900

Extremes (near the Mont Blanc and Monte
Rosa group), $\ldots \quad \ldots$
3. Glaciers.

The existence of the glaciers of High Asia was first made known for Western Tibet, by Vigne, who alludes to them repeatedly in his "Travels in Kashmír," London, 1842. Colonel Richard Strachey was the first* who (in 1847) proved their existence in the Himálaya. The recent date of this discovery will appear the more surprising, when the immense number of glaciers now positively ascertained to be in this region is taken into consideration. The great amount of ice to be met with, even in lower elevations of the Himálaya, could not of course escape the observation of previous travellers; these masses, however, they used to designate as "hard, frozen snow-beds," and to consider them as local phenomena, analogous to remains of avalanches.

On both sides of the Karakorúm and the Künlün, we also found glaciers, having forms identical with those of the Alps, and following the same laws of motion. Some of them are considerably larger than the glaciers in Europe. The Aletsch glacier in the Alps extends a little over fifteen miles in length, whilst some of the glaciers, surveyed by Captain Montgomerie and his party in Bálti (on the southern side of the Karakorúm)" boast of no less than thirty-six miles in length, with a breadth of from one to two and a half miles. The Biáfo glacier forms, with the glacier on the opposite slope towards Miggair, a continuous river of ice of sixty-four miles running in an almost straight line, and without any break in its continuity beyond those of the ordinary crevasses of glaciers. The 13iáfo glacier is supplied in a great measure from a vast dome of ice and snow, about one hundred and cighty square miles in area, in the whole of which only a few projecting points of wall are visible. The Bálsoro main glacier, thirty-

[^4]six miles in length, and with fourteen large tributary glaciers of from three to ten miles in length, would form a study in itself, and give employment for several summers, before it could be properly examined."*

In the Himálaya, the lowest glaciers go down to $11,000 \mathrm{ft}$. and even $10,500 \mathrm{ft}$. ; the Pindari ending at $11,492 \mathrm{ft}$., the Timtimna at 11,430 ft., the Tsóji at $10,967 \mathrm{ft}$., and the Chàia at $10,520 \mathrm{ft}$.

In Western Tibet, they descend to about the same elevation; thus, the Mustágh $11,576 \mathrm{ft}$., the Tapto $11,508 \mathrm{ft}$., the Támi Chúet to $10,460 \mathrm{ft}$., the Bépho (Biáfo of Capt. Montgomerie ?), near Askoli, even to $9,876 \mathrm{ft}$. The latter is worthy of notice as a remarkable case of low termination.

In the Künlün, the glaciers end probably at heights not much differing from those in Western Tibet; at least so we infer from the general appearance of the upper part of the glaciers we saw during our travels in these regions. The glaciers on both flanks of the Elchi pass presented, however, no instances of particularly deep descent.

In the Andes, no glaciers are as yet known to exist, \dagger and they do not occur in tropical America, from the equator to 19° latitude north.

In the Alps, the lowest glacier is that of Lower Grindelwald, ending at $3,290 \mathrm{ft}$, but in general $5,000 \mathrm{ft}$. must be considered as a rather low end of a glacier.

IV. Tile Varieties of Habitation.

1. Towns and Villayes.

The Himálaya rises, in general, so abruptly above the plains of India, and the latter, particularly in the western regions, are in themselves of such an elevation, that even in the lower parts of the valleys there are but few, if any points of less height than $1,000 \mathrm{ft}$. above the level of the sea. Two causes more especially have tended to displace the order of population in these districts, the lower parts being almost deserted in favour of the lands lying immediately above. In the first instance, the prevailing steepness of the country hercabouts, which is still considerably increased by the crosion of the rivers, precludes the successful cultivation of the soil ; and, again, the fertile, well cultiva-

[^5]ted plains of India are converted, wherever they touch the southern foot of the Himálaya, into swampy and marshy lands, called the Tarai, which in some parts form but a narrow strip or belt, whilst in others, as in Nepál, they attain a breadth of thirty to forty miles. The Tarai abounds with large and lofty forest trees. Owing to the swampy and malarious character of the Tarai, which skirts the extremities of the valleys, the neighbourhood is rendered as uninhabitable to the tribes of the Central Himálaya as to the highly susceptible and less seasoned visitor from European climes. Consequently (from all these reasons stated), in the inferior stratum of heights, ranging between 2,000 and $3,000 \mathrm{ft}$., the number of places inhabited by the natives is comparatively insignificant; while population reaches its maximum in the rich belt of life rising from 5,000 to $8,000 \mathrm{ft}$., the traces of man and his dwelling-place begin rapidly to disappear at $11,000 \mathrm{ft}$., and even before.

The highest limits of habitation, however, very often present themselves under a form which almost excludes the possibility of strictly comparing them as dependent upon climate. It is a remarkable fact, that in some provinces of the Himálaya, especially in Nepál, Kămáon, and Gărlıvál, many villages are deserted in winter, though as far as regards their elevation and the solid construction of the houses, they might very well be inhabited throughout the year. The natives, however, prefer removing to villages less elevated, where they spend the colder months. In the Himálaya west of Gürhvál, such modifications do not occur ; at least we are not aware of the existence of villages in Simla, Kúlu, Kishtvár \&c., where the inhabitants follow regularly the nomadic example furnished in other parts of the hill country.

The Alps of Europe also present instauces of this kind in Findelen ($7,192 \mathrm{ft}$.), Bresily ($6,594 \mathrm{ft}$.), and many other summer villages of greater or less elevation on the French side of the Alps.

Western Tibet is a country of such general elevation, that only in the province of Bálti villages are to be found below a height of 6,000 ft . Some of the chief towns are built at considerable clevations; Leh, the capital of Ladák, lies 11,527 ft. above the level of the sea. The highest permanently inhabited places are, however, Buddhist monasteries, the most elevated being probably that of Hanle, (15,117 ft.), in Ladák. I state it positively as my conviction, that nowhere in
the world there exists a permanently inhabited place at a height exceeding $15,600 \mathrm{ft}$. Paul de Carmoy's "Pueblo de Ocoruro," in the Sierra Nevada, 18,454 ft. high, will prove, on a closer examination, to be a temporarily inhabited place, similar to the summer villages of Tibet, of which I name Gártols ($15,090 \mathrm{ft}$.), Nórbu ($15,946 \mathrm{ft}$.), and Púga ($15,264 \mathrm{ft}$.)
 elevated, that no villages exist at all. By combining our own observations a variety of reports received, I obtain for its northern slopes $9,400 \mathrm{ft}$. as the limit of permanently inhabited villages; summer villages reach about $10,200 \mathrm{ft}$.

In the Andes, large and important permanently inhabited places have been built at great heights (Cerro de Pasco, 14,098 ft., Potosi $13,665 \mathrm{ft}$.) ; they are generally situated on plateaux. Santa Barbara, a mine with solid houses, about three miles south of Huancavelica, is situated at a height of $14,508 \mathrm{ft}$.

For the $A l{ }^{2} s$, , I have already had occasion to mention their summer villages. The highest permanently inhabited villages are in the valley of Avers in Graubündten, where Juf lies at an elevation of $7,172 \mathrm{ft}$., and that of Cresta exceeds $6,700 \mathrm{ft}$. But the roads leading across the passes have rendered it necessary to construct houses near the top which are permanently inhabited; the highest of these at present being the well known monastery of St. Bernard ($8,114 \mathrm{ft}$.) As long as the road over the Stelvio or Stilfser Joch was kept up, Santa Maria ($8,146 \mathrm{ft}$.) was also inhabited throughout the year.

2. Pasturc-grounds.

In the Himálaya, pastare-grounds "Kărik," for shecp and bovine cattle, are for the most part in low elevations, and at no great distance from the villages. The Kărik Biterguari, in Kămáon, must be mentioned as an exception to this general rule, it being situated at an elevation of $14,594 \mathrm{ft}$. Nowhere are there built on these pasture grouuls châlets (Alpenhütten), which are as little used in the Himálaya as tents in the Alps.

Dairies, which are dispersed all over the Nlps , and which form the source of a profitable income under an able management, are quite unknown in the Himálaya, even in those parts, as Kashmír and Nepál,
where ample tracts exist extremely favourable for crecting such establishments even on a large scale.

The pasture-grounds of Tibet, to which the numerous herds of sheep are driven in summer, reach an elevation from 15,000 to $16,349 \mathrm{ft}$, beyond which the Tibetan shepherds, who sometimes remain upon the mountaige from June to September, camot be supposed to make any permaifuchosidence. The most elevated pasture-grounds of Tibet
 Rúkchin ($15,064 \mathrm{ft}$.), A'mlung ($15,300 \mathrm{ft}$.), and Júgta ($15,058 \mathrm{ft}$.)

Though many cloudless days succced each other in thesc luity regions, thus leaving the power of direct insolation unimpaired, the climate always remains bleak; while the prevailing winds not only aggravate the effects of a low temperature, but also that of a low barometrical pressure, thus presenting a remarkable modification of climate, of which I shall hereafter give some detail in the considerations upon the influence of height in general. The shepherds with difficulty provide themselves with a sufficient supply of fuel for cooking purposes; sometimes they contrive with much labour and pains to erect rude stone walls, behind which they may take shelter during the night. These walls are usually circular in form, from four to five feet high, and without a roof.

In the Künlün, the slopes on its southern side are so elevated, that there exist no pasture-grounds at all ; on its northern slopes, they do not occur above $13,000 \mathrm{ft}$.

For the Andes no data with refcrence to pasture-grounds are at my disposal.

The pasture-gromis in the $A l^{n}$ s, which are gencrally in the neighbourhood of Châlets, may be met with at heights of $8,000 \mathrm{ft}$. and upwards: the Fluhalpe ($8,468 \mathrm{ft}$) on the Findelen glacier near the Monte Rosa, and the Torrenthŭtle, in the Anniviers valley, being instances of the greatest clevations.

V. Extreme heigifts visited by man.

1. Mountain-ascents.

Temporary habitations, frequented for some months, as we have seen from the discussion of the highest pasture-grounds, sometimes reach a height of nearly $16,300 \mathrm{ft}$. Λ s far as my experience goes, I
may state, that for short periods of ten or twelve days, man may considerably exceed this height, not without suffering, but at least without positive injury to himself. During our explorations of the Ibi Gámin glaciers, August 13 th to 23 rd , 1855, we encamped and slept during these ten days in company with eight men at very unusual heights. During this period, our lowest camp was pitched at 19,326 ft.-the greatest height at which we ever passed a night : - another was at $19,094 \mathrm{ft}$.; two camps exceeded $18,300 \mathrm{ft}$., and the remainder ranged between 18,000 and $17,000 \mathrm{ft}$. Apart from the extreme elevation and consequent cold, the borlily exertions imposed upon us during our stay, proved a great tax upon our powers. Once we crossed a pass of $20,439 \mathrm{ft}$., and three days earlier, August $19 \mathrm{th}, 1855$, we had ascended the flanks of Ibi Gámin to a height of $22,239 \mathrm{ft}$. This, as far as we know, is the greatest height yet reached on any mountain, though considerably below that to which man has arisen in balloons.

On the Sássar peak we attained (August 3rl, 1856) an elevation of $20,120 \mathrm{ft}$. As early as 1818 , however, the brothers Alexander and James G. Gerarl ascenderl (October 18th) a peak in Spiti 19,411 ft. high, not far from the Porgyál, or Tazhigáng. Subsequently, August 31st, 1828, Dr. James G. Gerard reached $20,400 \mathrm{ft}$.

From Captain T. G. Montgomerie we learn, that a station of 19,979 ft . has been reached twice by Mr. W. H. Johnson, and another of $19,958 \mathrm{ft} . *$ in height by Mr. W. G. Beverley. Mr. Johuson took, besides, observations in Ladák at one station more than $20,600 \mathrm{ft}$. high, the greatest altitude yet attained as a station of the Trigonometrical Survey of India. \dagger A trigonometrical mark has even been erected on a point $21,480 \mathrm{ft}$. above the level of the sea, "but unfortunately there was not sufficient space to put a theorlolite on it."

In the Andes, Humboldt ascended the flanks of Chimborazo (June 23rd, 1802) to a height of $19,286 \mathrm{ft}$. ; this being the extreme clevation attained at that period. Some years afterwarls (December 16th, 1831), Boussingault reached, on the same peak, a height of 19,695 ft. \ddagger

In the $A l^{\prime} p$ s, my brothers Adolphe and Hermann once remainel in the Vincenthütte, on the slopes of Monte Rosa, fourteen days at a

[^6]height of $10,374 \mathrm{ft}$. The well known English Professors Tyndall and Franklind even passed the night of August 21st, 1859, on the top of the Mont Blane ($15,784 \mathrm{ft}$.)

2. Balloon-ascents.

In the free atmosphere the greatest height was reached by Mr. Glaisher in a belloon, which was directed by Mr. Coswell ; he ascendel, September 5 th, 1862 , the extraordinary height of at least $30,000 \mathrm{ft}$., but, as he was unable to make any observations above that height, being suddenly overtaken by sickness, it is supposed that the balloon rose as high as seven miles $=36,960 \mathrm{ft}$.

Not less remarkable than this ascent was the one performed by Gay-Lussac, as early as the begimning of this century (September 16 th, 1804), when he rose to $23,020 \mathrm{ft}$. Between Gay-Lussac's and Mr. Glaisher's ascent, several attempts have been made to reach great heights in balloons, especially in Eugland, luring one of which the late Mr. Welsh reached (November 10th, 1852) 22,930 ft.* The bal-loon-aseents made in England were all combined with experiments of a highly interesting nature, and instituted by a scientific committee, among whose members it is sufficient only to name Sabine and Sykes.

Previous to Mr. Welsh, Messrs. Bixio and Barral rose (July $2 \overline{7}$ th, 1850) to a height of $23,009 \mathrm{ft}$.

A a balloon-ascent, remarkable not only on account of the height reached, but on account of the horizontal distance performed, I must mention the one made by Mr. Nalar, in company with eight persons, Octoler 18th, 1863. Mr. Nadar rose from Paris and let himself down —ne he rather fell down-near Rethem, a small town on the river Aller, in Hanover. The direct distance between these two towns is alout 395 miles, and as it took 15 hours, 47 minutes to travel through this distance, the balloon flew $2,227 \mathrm{ft}$ per minute, or 37 ft . per second. But, as the balloon was far from going in a straight line, it has been computed, that the greatest velocity attained by it anounted to 50 ft . per second.

3. Effect of height.

The effect of height is chiefly pereeptible in the decrease of temperature and barometrical pressure. According to our olservations, * "Philosophical Transactions," 1853, Part I II., p. 320.
the atmospheric pressure is, at a height of about 18,600 or $18,800 \mathrm{ft}$., one-half of that at the level of the sea. At an elevation of $22,200 \mathrm{ft}$. (so trivial a height when compared with the extreme upper limit of the atmosphere), we observed a barometrical pressure of 13.364 inches, so that nearly three-fifths of the weight of the atmosphere lay below the point reached by us at the time.

It is evident that there must be a limit beyond which the degree of rarefaction is incompatible with the conditions of human existence; but it will ever remain extremely difficult to determine the line of demarcation, with any approach to scientific precision.

The influence* which height exercises upon man, varies with the individual; a man in good health having the chance of less suffering. The difference of race has apparently no appreciable importance. Our Hindu gervants suffered far more from the cold than our Tibetan companions, though not more from the diminished pressure. For the generality of people the influence of height begins at $16,500 \mathrm{ft}$., a height nearly coinciding with that of the highest pasture grounds visited by shepherds.

The complaints prodaced by diminished pressure are,-headache, difficulty of respiration, and affection of the lungs, the latter even proceeding so far as to occasion blood-spitting, want of appetite and even sickness, muscular weakness, and a general depression and lowness of spirits. Bleeding of the nose we experienced ourselves, thouglevery rarely, the loss of blood on such occasions being insignificant; but bleeding of the ears and lips we neither experienced personally, nor observed in others during our travels in High Asia. Humboldt, \dagger however, states, that on the Antisana, at a height of $18,141 \mathrm{ft}$., his companion, Don Carlos Montufar, bleeded heavily from the lips, and that during the ascent of the Chimborazo, every one suffered from bleeding of the lips and even the gums.

The effects here mentioned, which disappear in a healthy man almost simultancously with his return to lower regions, are not sensibly increased by cold, but the wind has a most decided influence for

[^7]the worse upon the feelings. As this was a phenomenon we had not hitherto found mentioned by former observers, we directed our particular attention to it, and remarked instances where fatigue had absolutely nothing to do with it. In the plateaux of the Karakorím, it was a common occurrence, even for the sleepers in the tents, where they might be considered as somewhat protected, to be waked up in the night with a heavy feeling of oppression, the entire disturbanco being traceable to a breeze, which had sprung up during the hofrts of rest.
The effects of diminished atmospheric pressure are considerably aggravated by fatigue. It is surprising to what a degree it is possible for exhaustion to supervene ; even the act of speaking is folt to be a labour, and one gets as careless of comfort as of danger.

VI. Limits of vegetation and animal life.

1. Vegetation.

In India, the vegetation is not limited by climate in the elevations existing ; the higheşt peaks, as the Dodabétta ($8,640 \mathrm{ft}$.), in the NiIgiris, the most elevated plateaux are covered with trees, shrubs, and in fact a luxurious vegetation, not only along their slopes, but even on their top.

In the Himalaya, trees grow very generally up to heights of 11,800 ft., and in most parts there are extensive forests covering the sides of the mountains at but a little distance below this limit. Those forests are especially beautiful in the higher valleys of Kâmáon and Gârhvál, in the Blagiráthi valley.

In Western Tiket, though we did traverse it in various directions, nono of us found anything at all corresponding to a forest. Apricot trees, willows, and poplars are frequently cultivated on a large seale; poplars, invlecel, are found at Mánguang, in Gnári Khórsum, still at a height of $13,457 \mathrm{ft}$. ; but they are the objects of the greatest care and attention to the Lamas.

Tn the Kiunlinn, we found the trees on its northern side not to grow -nlove 9,100 ft. On the northern side, we saw no trees at all; here the eonsiderable height of the valleys we passed excluded them.

In the A mifs, trees cul at alout 12,130 ft.; in the $A l p s$ on an average at $\mathbf{6}, 400 \mathrm{ft}$, isolatel specimens occurving, however, above $7,000 \mathrm{ft}$.

The cultivation of grain coincides, in most cases, with the highest permanently inhabited villages: but the extremes of cultivated grain remain below the limit of permanent habitation. In the Himálaya, cultivation of grain does not exceed $11,800 \mathrm{ft}$, in Tibet $14,700 \mathrm{ft}$., and in the Kün7ün $9,700 \mathrm{ft}$. For the Andes, the limit is $11,800 \mathrm{ft}$.; in the $A l_{p s}$, some of the extremes are found near Tindelen, at a height of $6,630 \mathrm{ft}$., but the mean is about $5,000 \mathrm{ft}$.

The upper mean limit of grass-vegetation is, in the Himálaya, at $15,400 \mathrm{ft}$., in Western Tibet at $16,500 \mathrm{ft}$. ; in the Künlün, grass is not found above $14,800 \mathrm{ft}$.

Shrubs grow, in the Himalaya, up to $15,200 \mathrm{ft}$., in Western Tibet, as high as $17,000 \mathrm{ft}$. On the plateaux to the north of the Karakorim, shrubs are found at $16,900 \mathrm{ft}$., and, which is more remarkable, they occasionally grow there in considerable quantities on spots entirely destitute of grass. As an example, I mention the Voháb Chilgàne platcau ($16,419 \mathrm{ft}$.) and Bashmalgún ($14,207 \mathrm{ft}$.)

In the Künlün, the upper limit of shrubs does not exceed 12,700 ft. ; above this height grass is still plentiful ; and shrubs being here, as generally everywhere else, confined to a limit below the vegetation of grass, the range presents an essential contrast in this respect to the characteristic aspect of the Karakorúm.

In the Audes, shrubs grow up to $13,420 \mathrm{ft}$, in the Alps, their upper limit is at $8,000 \mathrm{ft}$.

The very extreme limit of phanerogamic plants appeared in Tibet nt the north-eastern slopes of the Ibi Gămin pass, at a height of $19,909 \mathrm{ft}$. ; next in order came those of the Gunshankĭr peak, in Gnári Khórsum, at 19,237 ft. In the Himallaya, the highest plants were found by us at $17,500 \mathrm{ft}$, on the slopes of the Jante pass, in Kămáon.

In the Andes, Colonel Hall found the highest phanerogamic plants on the slopes of Chimborazo, at $15,769 \mathrm{ft}$., conseducutly $4,040 \mathrm{it}$. lower than the Ibi Gămin plants in Tibet.

In the $A_{D^{s}}$, my brothers found an analogous extreme on the southern slopes of the Vincent pyramide at $12,540 \mathrm{ft}$.

2. Animal life.

Monkeys nppear to frequent, in the ILimálaya, regions exceeling $11,000 \mathrm{ft}$. in keight ; the Semmopithecens schisteccus, Morlgs. aseending
higher than others. These monkeys, called "Langúrs" by the natives, have been frequently seen at $11,000 \mathrm{ft}$., while the fir-trees among which they sported were loaded with snow-wreaths. This species is not known in India, whilst the Macacus Rhesus is met with in India, as well as in the Himálaya.

In Western Tibet, and farther to the north, no monkeys have yet been found. Tigers ascend to $11,000 \mathrm{ft}$. in the Himálaya; they are not, however, seen in Western Tíbet or the Künlün.

Leoparls may be met with, in the Himálaya and in Tíbet, even at 13,000 and $14,000 \mathrm{ft}$. The lion, though intimately comnected with the mythology of High Asia, has been forthcoming, in historical times, only in Kashmír. In India, the lion occurs at the present day only in Guzrät, and there only in very small numbers.

Jackals were found by us in the Karakorum between 16,000 and $17,000 \mathrm{ft}$. Wolves are not known to frequent the Hinuálaya Proper, but they are found in Tibet, where we saw of traces of them in sand close to the Karakorúm pass ($18,345 \mathrm{ft}$.)

Various species of beautiful wild sheep and ibex, together with the Kyáng and the wild yak, are met with in large herds on the highest plateaux between the Karakorúm and the Künlün.

The cat is common in Tibet; doys are the companions of the Tibetan shepherds, whom they follow over passes exceeding $18,000 \mathrm{ft}$.

Some species of bats are seen in the Himálaya up to $9,000 \mathrm{ft}$; and the Tibetan hare occurs even in heights exceeding $18,000 \mathrm{it}$.

Miyratory birds are not known to cross the Himálaya, as many birls of Europe cross the Alps. Doves were seen by us at very great heights in the Karakorúm and Künlün ; this was the most surprising, as other birds were very rare.

The domestic forl has recently been introduced with great success by Guláb Siugh into Bálti, Ladák, and Núbra.

Fishes were found by us in some rivulets of Tibet exceeding 15,000 ft . In the $A l^{\prime}$ s they cannot live beyond $7,000 \mathrm{ft}$.

Of reptites we found snakes and saurians as high as $15,200 \mathrm{ft}$. In the $A l^{p s}$ they go up to $6,000 \mathrm{ft}$., in the Pyrenees to $7,000 \mathrm{ft}$. In the Amles, snakes were found by Schmarda at about $11,500 \mathrm{ft}$.

For buttroflies we found in the Iimálaya $13,000 \mathrm{ft}$., in Tibet and Turkistán even $\mathbf{1 6 , 0 0 0} \mathrm{ft}$, as localities of permanent habitation. Bec-
tles probably follow the highest formation of grassy turf in the Himá. laya, as well as in the Andes and the Alps. Mosquitoes go up to $8,500 \mathrm{ft}$. ; and peepsies make themselves very troublesome during the rainy season as high as $13,000 \mathrm{ft}$.

The existence of infusoria seems as little subject to limitation by height in High Asia, as in the Andes and Alps. In a few fragments which we chipped off from the rocks of the Ibi Gamin pass $(20,459$ ft.) Prof. Ehrenberg of Berlin detected their presence, and found them not_insignificant in quantity ; he discovered twelve species new to science.

[^0]: * According to Mr. Theobald, Jr. (see Journ. As. Soc., Bong, 1862, No. V., p. ©13) unly $14,272$.

[^1]: * See the "Fnumeration of the hot springs of India and High Asia, given by mo in As. Soc. Journnl, 1864, No, I., p. 49.
 † Uumboldt's "Essai praliquo sur la Nouvelle Espagno." 2nd Ed., Vol. IlI. (1827), p. 190.

[^2]: * Humboldt's " Kosmos," Vol. IV., p. 246.
 \dagger Newbold, in "Philos. Transactions," 1845, p. 127.
 \ddagger Colonel R. Strachey, in this Journal, Vol. XVIII., Part I., p. 309.
 § This Journal, Vol. III., p. 367.

[^3]: * See Batten, in the "Calcutta Jonr. of Nat. Fist.," Vol. IV. p. 537 ; Vol. V.
 p. 383. Capt. T. Hutton, "in the same Journ." Vol. IV. p. 275; Vol. V. p. 379 ; Vol. VI. p. 56 ; and Capt. A. Jack, "in the same Journ." Vol. IV. p. 455.
 † "Asie Centrale," 1847, Vol. II. pp. 165 and 177.

[^4]: * See this Journal, Vol, XVI., part II. p. 794 ; Vol. XVII. part II. p. 203.

[^5]: - Montgomeric, in "Journ. As. Boc. Bong. 1862, No. II. p. 210.
 † Humboldt, "Asie Centrale," Vol. II. p. 167.

[^6]: * See this Journal, 1861, No. II., pp. 99, 110.
 \dagger See this Journal, 1863, No. II., p. iii.
 \ddagger Humboldt's " Kleinere Schriften," p. 157.

[^7]: * Notices nod remarks on this subject are to lon found in "Gleanings in " Science," Vol. I., p. 330 ; Cierard's " Koonawne;" Hooker's " Himalayan Jourmala," Vol. II., p. 413 ; Thomson's "Western Itimálaya nad T'íbet," p. 135 and p. 433.
 t " Klcinere Schriften," Vol. I., p. 18.

